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About Me

* Associate Professor, ASU Fulton Engineering School of Computing and Al
* Education

« 2004-2008: B.E. from University of Science and Technology of China, Hefei, China
e 2008-2011: M.E. from Chinese Academy of Sciences, Beijing, China
e 2011-2016: Ph.D. from Rutgers University, NJ, USA

* Track Records

e Awards: 2023 US NAE FOE early career engineer, 2021 US NSF CAREER award, 2018 NSF CRIl award,

five best paper (finalist/runner-up) in SIGSpatial20, ICDM15, 21, 20, KDD18, several university-level
awards and industrial awards

* Research: Google Scholar citation: around 7500+, recognized in the Stanford Elsevier 2024 World's Top
2% Scientists

* Grants: 10 grants (including 7 NSF leading Pl/site Pl core research grants)

* Teaching: 4 PhDs graduated (3 tenure track assistant professors at UMacau, UKansas, Portland State,
1 postdoc at UOxford UK), supervising 6 PhDs, average teaching rating:4.6/5
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Senseable Cities: Sensors, |loTs, Mobile
Devices, Location Based Social Networks

obile phones and
Apps, loT, GPS, wireless
sensors, edge devices,
digital twins
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Turning Big Data into Urban Intelligence

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce
Air Pollution, ...

Urban Data Analytics

Data Mining, Machine Learning, Visualization
K

Urban Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...
A
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Human Traffic Air Meteorolo Social ergy Road

mobility Quality gy Media Networks

Urban Sensing & Data A cquisition
Participatory Sensing, Crowd Sensing, Mobile Sensing
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Project: Making Sense of Human Mobility
Data

 Multi-source, multi-dimensional, multi-
domain, multi-format, semantically-rich,
collectively-related human mobility data

* Devices, e.g., smart phones, smart watches

* Vehicles, e.g., taxicabs, buses, subways, city
bikes

* Sensors, e.g., GPS, satellite remote sensing
* Buildings, e.g., banks, shopping malls,

restaurants
* Human in location based services, e.g.,
Foursquare, Flickr, Tweeter, Facebook, Google+, PHOENIKFALLING
Ye I p SATURN'S SATELLITES .
Mayhem in the F ring ’ .{&k-d.r: @

~ OBESITY 3
Fat cell numbers are for life _ |IH
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Human Mobility Modeling Research

* Collective Modeling
* Geographic co-location: documents and words
* Graph structure: dynamic graphs over time
» Spatial diffusion: stochastic processes
* Collaborative correlation: tensors and factorization

* Semantic Augmentation

» Trajectories: what (trip purposes), where (destinations), when (trip time), who (out-of-town
travelers or local residents)

» Users: user demographics, profiles, daily activities, preferences, social groups
* Events: spatiotemporal event detections (e.g., protests, incidents)
e Regions: important locations, spatial configurations, urban functions

* Human-Community Interactions
* Human-Transportation-Systems interactions
* Human-Food-Services interactions
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Human Mobility Synchronization and Trip
Purpose Detection (ACM SIGKDD 2017)

JFK international airport arrival distribution on workdays Newark international airport arrival distribution on workdays
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 Taxi arrival distributions of JFK Airport and Newark Airport

* Two regions show similar arrival patterns in particular time periods if
they share similar urban functions

Wang, Pengfei, et al. "Human mobility synchronization and trip purpose detection with mixture of
hawkes processes." Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017.
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Linking Mobility Arrivals, Urban Functional Regions
and Trip Purposes via Synchronized Mixture
Hawkes Process

l TP Purposes —— \obility arrivals observed in the i-th region :
Ai = Ai,eat(t) + Ai,work(t) + Ai,relax(t) + -
N b
\ N
- il
e ||\‘ ‘ ‘IT|||| L) . Region i
Timeline

Relax

Origin
. . . Synchronization
. . . offect Synchronization rate (i, j)
. . . ‘ >
MiTim
. . . I Il l ’ Timeline> Regionj

Computing insights: mixture stochastic processes + self exciting +
mutual exciting effects = event modeling & trip purpose detection
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Project: Deep Geospatial Representation Learning
for Region Characterization, Mobile User Profiling,
Driving Behavior Analysis
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:_ and performing machine learning |

Graduated PhD: Dr. Pengyang Wang, a tenure-track assistant professor in University of Macau
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Structure-aware, Collective, Dynamic
Geospatial Representatmn

Library «—— 3 IT Library

e . o

Department

N e

1) Structure-aware spatial representation

' o o’ e s — learning for mobile user activity profiling
i \§ office and next visit prediction
MacDonald / » ’ / \
s::/ti?:e PreSchool ——————— & Home
Global Structu re Patterns  Substructure Patterns Representations
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3) Dynamic spatial representation learning
for risky driver detection

2) Collective spatial representatlon learning for region
orofiling and characterization
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Project: Transportation, Mobility, and
Crowdedness-aware Routing

/ Origin and /_{ Route / Recommended /
Destination Generfting Routg
Network of Public Candidat Crowdedness Aware
Transit System e Routes Route Recommendation

Route
Recommendation
‘\-\

5 Trangfer Flow Prediction Result
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:g Multi-task Learning ' Regularization Terms
£ || station = Station Station [T L35S0 Regularization
3 01 02 N = Ridge Regularization
E | Predictor ~ Predictor Predictor |4 Spatial Regularization
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|
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. . 0 Feature Vector of Each Subway Station
* Time cost based routing or comfort g '
. & Feature Extraction
based routing? - — R e e S
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* Take the spatial temporal unbalance of § | Transaction J| " bata” ]| bata_ || bata__|_Data |

passenger flow into account
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Project: Leveraging Human Mobility Modeling
ng Mobile Network Planning

7
i
) .

, . Coverage:
47 } 1, Horizontal Azimuth Maximize the
:{I | 2, Vertical Tilt capacity
i | _ LECRUCIN Optimizat
1B | Capacity: coverage io
NIt 1, Pilot Power best
it Ae
Quality Improve the
1, network resources quality

such as bandwidth, SINR

** Optimize the coverage, capacity and quality of networks using the data from

network monitoring (devices), human mobility (physical), and social networks
data streams (cyber)

+»* Decision rule based methods (white box) and reinforcement learning (black box)
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Project: Site Selection for Planning Gas and

Bike Stations

T

Gas Refilling Event Detection and Gas Station
Site Selection (DASFAA16)

Niu, Hongting, et al. "Exploiting human mobility patterns for gas station site selection." Database
Systems for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX,
USA, April 16-19, 2016, Proceedings, Part | 21. Springer International Publishing, 2016.
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Bike Station Site Selection and Rebalancing (ICDM15)

Liu, Jingyuan, et al. "Station site optimization in bike sharing systems." 2015 IEEE
international conference on data mining. IEEE, 2015.



 Spatial characters of vibrant communities:

* Walkable, Dense, Compact, Diverse, Accessible,
Connected, Multiple land uses

 Quantification methods via socio-economic
aspects

* Willingness to pay
* Diversity and frequency of mobile activities
e Social interaction intensity from social media

* “lll: Understanding Urban Vibrancy: A
Geographical Learning Approach Employing
Big Crowd-Sourced Geo-Tagged Data”. IIS-
1755946. National Science Foundation.

facebook
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Modeling Locational Insights of Vibrant
Communities

Parkin g Lot

Shopping.J/_ —‘a J
Cate mg ‘ j J

Apartment & Hotel

cpnic Spot

The needs
for ranking

— Vibrancy| -

SCOres |l j

oooooooooooooooooooooo

Locatlon ranking

e Geographic individual dependency (land-use data)
* community vibrancy is related to geographic characteristics of its own neighborhood

* Geographic peer dependency (human mobility data)
e community vibrancy is related to nearby community vibrancy

* Geographic zone/hierarchical dependency (spatial hierarchical structure)
e community vibrancy is impacted by the vibrancy of its associated region/area
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Project: Profiling Mixed Land-uses of Urban

Com mun Itles(m mposition of community functions
Office Government agencies
Retail Residential
Education 9 Entertainment
Transportation Finance and banking
Light industry Heavy industry

* Which community functions are compatible?
* |dentify compatible urban functions that help increase vibrancy

 What is the composition of these compatible functions?
* Learn the portfolio of these compatible functions in a community

IraA. FuI_tonSchoo!sof
% Engineering

Arizona State University



Urban Communities, Urban Functions, Temporal
Effect, and Mobility Patterns: Latent Factor Models

Urban Community Urban Community

Time Period
Urban
Function Urban
Function

Urban Community

Time Period Q\

[ Urban Function J

— O1ofo—e]
Checkin Taxi Bus « 0 z W N
Patterns

Patterns Patterns
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Project: Leveraging Mixed Land-uses and
Diversity for Real Estate Value Prediction

The portfolios of urban functions for high-rated
. Civic ] communities

& 4 : n
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\lf== @B Light industrial Real estate rankings

'. f iy The portfolios of urban functions for low-rated
W = B openspace "
Land use in Oxpens " ) =2 V\:]ater' 2 communities

Insight: High-rated locations maximally cover balanced : 1 B I B N e
urban functions

Functionalities
vl AW N =

Incorporate functional diversity into list-wise learning 2505 2510 2515 2520 2525

to ranking to enhance real estate ranking

Ira A. Fulton Schools of

Engineering

Arizona State University



Project: Urban Planning and Generative A

T Simplified URBAN PLANNING PROCESS ot Lt

09/07/2017

Strategy for energy Organisationand
geRaliainewnti and urban planning actors

z 5-Virtual Layer
Preparatory planning phase Firebaransis firstassessments, /Digital Twin
(exploration, scoping) analy basic data, pre-checks

Policy vision and agreements
l 4-Digital Layer
- /Smart City
Feasibility and master
planning phase Feasibility studies feasdnllty of dlffgrent
themes like mobility
[ =
2
53 Janni master plan, urban design, ©
SIER prannIng contracts, agreements o 3-Mobility
o
=
e
I pl h 3 3
Forma annin ase daptati
(Zoning)}) 4 adaptations °
, ] Ly
Land Use Plan, Zoning plan, a -D
Zoning Building Regulation Plan; 2
formal steps defined by law 2-Infrastructure D
approval by City Council U
Design and implementation I I l
phase final design of buildings and
Design public/green spaces, 1-Buildings
l adaptations, competition x x x x

Building Permit, [}
Permits Environmental Permit, ... " .t
according to law

O-Terrain
Operational phase

Quality monitoring,
management quarter management

Source: City of Vienna — MA20 (Hemis)
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Generative Urban Planning

Human Instructions as
Planning Requirements

Context1l | Context2 " Cotext 3

Cintext4 Targe?ﬂ\rea . Cogtext 5 MOdEIing: ]

| generative Al as Community

Siesss e £y automated urban Configurations:
planner where to put

Given: geographic, mobile, social,
economic, environmental, demographics
data as planning contexts
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_.and-use Configuration as A Longitude-
_atitude-Building Function Tensor

-

POI Category code  POIcategory code  POI category
0 road 10  tourist attraction
store 1 car service 11 real estate
bank [ HEEEEER 2 car repair 12 government place
SChOO| L] ] 3 motorbike service 13 education
...... 4 food service 14 transportation
Latitude 5 shopping 15 finance
6  daily life service 16 company
7  recreation service 17 road furniture
< 8 medical service 18  specific address
Longitude 9 lodging 19 public service

Land use configuration: a tensor of longitude, latitude, POl function category, in which
each entry’s value is the number of POIs with respect to a POI function category in a

specific latitude range and a specific longitude ranges
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Generation: Automated Generative Planning via
Adversarial Learning (siGspaTiAL 2020 Best Paper Runner-up)

Poor

Computing Insights: Land-use Plan

* Aregion as a spatial attributed graph 201G sgury
augmented with surrounding regions and i — i
geographic contexts [—

* A land-use configuration as a tensor of e
building allocations Quality ‘

* The urban planner is a graph-encoder Land'usi lzlin Diseriminator

tensor-decoder generative model

* Planning scores: willingness to pay,
diversity and intensity of human activities,
social interaction

Longitude

]

Surrounding
y Generated
Environment [ == —>Jéﬁ2§.======= f Land
-use Plan
Embeddlng i - ' ' Latitude

Longitude

Generator

POI Category

Wang, Dongjie, et al. "Automated urban planning for reimagining city configuration via
adversarial learning: quantification, generation, and evaluation." ACM Transactions on
Spatial Algorithms and Systems 9.1 (2023): 1-24.
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Alignment: Deep Human-guided Conditional
Variational Generative I\/Iodeling (IEEE ICDM 2021 Best Paper Finalist)

Wang, Dongjie, et al. "Deep human-guided conditional variational generative modeling

Sll:JrroundiEg Efzjn;eXtS for automated urban planning.” 2021 IEEE international conference on data mining
. . eature Embeddin
Modality 1: spatial == - === > 9 Gondition (ICDM). IEEE, 2021.
attributed graphs E Embedding o Coarse-grain
ncoder
= Latent_ Decoder Urban Functional Zones « _ _ semantic
% ﬂ _____ Embedding - )
—> & % = o abstractions
B 0 — ) = g —
E @ S u 8
8 Lo S @)
Human Guidance 0 B ( 2
1 . - ' I i = O Category
MOdallty 2- teXtuaI - > Embeddlng wore 8 i__: > O > st.t.).rei . .
instruction U B sch;m{[ Latitude Flne—graln
o i ~»~ quantitative
N Reconstructed Land-use 4~ ~ distributions
Larig-uss Configuration
Configuration

Computing Insights:
 align planning generation: 1) between human textual guidance and surrounding contexts 2) between zone-
level urban functions and grid-level land-use configurations
* Textual instructions as generative conditions of deep variational generative autoencoder
* Joint generation of zone-level urban function distributions and grid-level POI distributions as alignment
FS Engineering
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Hierarchy: Human-instructed Deep
Hierarchical Generative Learning (aaai 2023)

-

Urban
Planner

Computing insight:
hierarchically generate
zone-level planning then
generate grid-level planning.

Rough Sketch of
Urban Planning

""""""""""""""""""""""""""""""""""" LiLIPS i
L l_{_ = LI
) Liks i : I‘T‘{ i
| LIEELEE, i
i Automated Urban - : - ; Wang, Dongjie, et al. "Human-instructed deep hierarchical generative leaming for
Planner Urban Functional Zones Land-use Configurations automated urban planning.” Proceedings of the AAAI Conference on Artificial
D (ZonelevelPlanning) ______________(GridLevel Planning) Intelligence. Vol. 37. No. 4. 2023.
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Reinforcement: Urban Planning as
Reinforcement Decision Process (siAM SDM 2023)

Where to allocate buildings?

Environment

Reward State
R; S;

Agent (‘

Discussion/Revision

Update spatial Reward of allocating

Y Y L3 L3
configuration buildings
Wang, P., Wang, D., Liu, K., Wang, D., Zhou, Y., Sun, L., & Fu, Y. (2023). Hierarchical
Reinforced Urban Planning: Jointly Steering Region and Block Configurations. Zheng, Y., Lin, Y., Zhao, L. et al. Spatial planning of urban communities via deep
In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM) (pp. reinforcement learning. Nat Comput Sci 3, 748-762 (2023).
https://doi.org/10.1038/s43588-023-00503-5

343-351). Society for Industrial and Applied Mathematics.
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Open Challenges and Research Directions
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Compromise, fix one issue but generate
another issue
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Detecting Real Human Needs for Urban
Planning
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Planning Scope: Generic Global Planning
versus Specific Local Planning

* Example: land use configurations versus sidewalk planning

POI Category

store

bank HNENEEEN
school HEEEEEN
HEEEEN

Latitude

<

Longitude
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Static or Dynamic: Planning Configuration
versus Planning Adjustment

_, RESDENTIA = "ONE-TIME STATIC LAND USE CONFIGATION

o] i H M
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CoDesign: Human-Machine Collaborative
Planning

* Conversational Eenerative Al: integrating generative intelligence and
human feedback in the loop to collaborative planning

Speech to Text Planning Constraints in

Human Expert Can you help me generate an

urban plan with high green rate?

—>

Dialog
Management

Generative Learning
based Urban Planner

Natural Language
Understanding Output and Ask the opinion of human expert

How about this one? You can provide other requirements to refine the generated solution.
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i

Affonble Popuatlon

e Lg

H Uuman vad | ue * Functionality fairness oriented planning

Mobility and accessibility fairness oriented planning

aligned and
human-centric
urban planning

Environment and green sustainability oriented planning

Diverse and intense social interaction oriented planning
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Urban Digital Twins: A Close Loop of
Simulation, Measurement, Planning Decisions

. STEP 1 S ,

* It takes a long time to evaluate the SIMULATION QuANTEE
social economic impacts of urban Gi‘?g?i?ﬁ?ia“&?‘?- | Af‘?ﬁ?&?ﬁéﬁ%
planning. ool '

* A loop of simulation-measurement-
planning

e Simulation: simulate how a spatial
configuration can impact the geospatial,
mobility, human, social data of a place

* Measurement: quantify sustainability,
accessibility, vibrancy, happiness, safety,
resilience with simulated data

* Planning decisions: measurements as S
optimization feedback to learn decision P et oy
policy networks of urban planning accessibitys, &, Safety,

for improreing occloms

°PTIM12AT\0“
: STEP 3

Using emping ucerans
atcarebiity, happriety,
safety, and resillence
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LLM and Agentic Al for Urban Planning

Why urban agnets
cann plan urban regions’

. ] LLM Agent P Zoning laws
Leveraging the representation, Zuban constructs | | ' Sustainabity
. . and goals as inputs - Supullablty targats
al IgNM ent, cross-modal Ity Supainabity tarcels Eppulatisic farcors
I l Zoning laws “ustainabity 12
generation, understanding, Sustainabity o0 (e
. . . targets ' Population farcars
reasoning, planning, grounding, fomic -, Insonomic.

tasking abilities of LLMs over vision-
text-tabular modalities

- Feedback locris

gentration
ar roads sar geads
Destbucts Construicts
ce censunkeck cestons to explanhe ootz
insasturr consructs 1 urDaUnc consrutes
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Thank You.

Yanjie Fu
Yanjie.fu@asu.edu

School of Computing and Al
Arizona State University
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Deep Hierarchical Generative Planning: from planning
functional zones to planning landuse configuration

Step 3: Generating Grid Level

Step 1: Generating Urban and Constraints to Functional Zones Land-use Configuration
Functlonal Zones Zone-Level Generation Functionalizer Grid-Level Generation

Step 2: Projecting Planning Contexts

I ] I
D o i
1 1
0 . S P! Lo i
[} ! : ondltlt:n:\g ! Generated Urban ! i Lo ) '
| want to generate —_ | ugmentation | Functional Zone 1 : Fl F2 FM : : Plannlng 1
an urban planning Embedding: ! | ! po z . Layers :
solution that zZ ! V! - I s o T i
reen level is 5. 1 [ Generator — ot HHH ! ::ul . T 0] H " !
’ - / : | ol JL l L E i S g '_: Final Land-use |
| | ) [ A . ! ! 8 J ! ! Configuration !
=i \ :nmN(Ul): i \ |AverageFusionLayer| - M :r:["f_' Z Ll 2 ooF _:-3 5;;;%,': i
| —™ | T . ! T Yo i i @ N L N — > SO
E = ! ! : . b b | = a ! | HirEE
e A T R e b [ melaer ] e S | e i !
= = ! | : ikt=—| Discriminator —0/1 1 | N : : - @ ! 1 X !
~N(0,1) ! e [ | Il-w—b 2 It | i !
Surrounding (R VD i ! ; : - ‘ ® :;!5 |
Contexts 1 Real Urban : | : 1 Ur!:)an i Enhanced :
\ Functional Zone : : i | Functionality Projections \
R NP Vo e ___y 1__Proectons_____ o ______ l

Computing Insights:
* Spatial hierarchy to steer generation from functional zones to grid configurations
» Different planning requirements have different attentions (projections) to urban functionalities
* Functionalizer by neural selection, memory, forget to project planning requirements to zones of
different functionalities
FS Engineering
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Urban Digital Twins: A Close Loop of
Simulation, Measurement, Planning

* Delayed Effects of Urban Planning

* |t takes a long time to observe how can urban planning change the social,
economic, human factors of a community.

e Potential Direction: interactive simulation-measurement-decision for
evaluating the effectiveness of urban planning

* Using urban simulator to simulate the geospatial, mobility, human, social data
of a place conditional on an urban planning

* Measure the sustainability, accessibility, vibrancy, happiness, safety,
resilience, etc. of a community with simulated data

* Leverage measurements to provide optimization feedback to adjust urban
planning for better intervention

%‘ Ira A. Fulton Schools of
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The Al Task: Unsupervised Extraction of
Compatible Urban Functions and Portfolios

Residential complexes with locations and historical prices
Urban geography (e.g., POls, road networks)

Human mobility (e.g., taxi, bus, checkin)

Customer reviews of business venues

* |dentify compatible community functions and their corresponding portfolios
for each residential complex

% Ira A. Fulton Schools of
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How Land-use/Urban Function Diversity
mpacts Community Values?

\ o

i \ 3 ] .
g Hl RLFOR OiiE
| €.
A
5 ) .
— faltz

High-
rated
complex?

—
S — R

‘ y (
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N N
Housing Price | Location > Mixed Land Use
Rating

AN AN
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Project 3: Deep Time Series Learning: forecasting,
distribution shift, event detect|on causahty

P s s e o e . . - F________

Time Series Distribution Regularity
* Periodic Time Series via Learning

[ J
|
|
|
|
|
|

/VI
|
R
\N
)
é"——P
;
&
|
|
|
|
|
|
- |
|
|

Data Distributions Lookback Window | :
-- Distribution Extraction with N orizon Window
Expan5|on Learning

* Time Series Distribution Shift 01-03 00:00 01-03 08:00 01-03 16:00 01-04'00:5)

* Shifted Time Series via

Mampulatmg Data Distributions

-- Distribution Scaling with Time
Series Norm-Denorm

* Distribution Transformation with
Time Series Normalizing Flow

Multimodal Time Series Foundation,
Alignment, Representation Models

Time Series Casual Graph Learning

Inter-space shift

Intra-space shift “ r 1
l

lookback at t,,
lookback at t;, . o

Graduated PhD: Dr. Wei Fan, a post doc at University of Oxford (time series for healthcare)
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